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This paper presents a detailed review of research work on in-tube condensation in the literature due to its
significance in refrigeration, air conditioning and heat pump applications. The heat transfer performance
of heat exchangers can be improved by heat transfer enhancement techniques, such as active and passive
techniques. Passive techniques requiring fluid additives or special surface geometries are mentioned in
depth, by comparison with active techniques requiring external forces, e.g. electrical field, acoustic or sur-
face vibration, etc., in the paper due to their common usage in condensation applications. In addition, the
importance of usage of hydrocarbons instead of fluorocarbons is emphasised. This paper can not only be
used as the starting point for the researcher interested in in-tube condensation process, but it also
includes new investigations on condensation inside tubes.
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Nomenclature

A area, m2

B fin root distance, m
d inner diameter, or average inner diameter of tube, m
EHD Electrohydrodynamic
G mass flux, kg m�2 s�1

g gravitational acceleration, m s�2

h heat transfer coefficient, W m�2 K�1

L length of test tube, m
l fin height, m
n number of fins
R radius, m
P pressure, N m�2

p fin pitch, m
Re Reynolds number
S slip ratio
t fin tip thickness, m
u axial velocity, m s�1

v radial velocity, m s�1

w tube wall thickness, m
We Weber number
x average vapor quality
X Lockhart Martinelli parameter
y wall coordinate, m

z axial coordinate, m
DP pressure drop, Pa

Greek symbols
c apex angle, �
a void fraction
si interfacial shear stress, N m�2

d film thickness, m
b helix angle, �
r surface tension, N m�1

q density, kg m�3

l dynamic viscosity, Pa s
g kinematic viscosity, m2 s�1

H angle of the condensate film layer, �

Subscripts
f frictional term
g gas/vapor
l liquid
mf micro-fin
o outer
s smooth

3410 A.S. Dalkilic, S. Wongwises / International Journal of Heat and Mass Transfer 52 (2009) 3409–3426
1. Introduction

Heat exchangers are devices that are commonly used to transfer
heat between two or more fluids at different temperatures. They
are used in a wide variety of applications, e.g. refrigeration and
air conditioning systems, power engineering and other thermal
processing plants.

One of the major contributors to the depletion of the ozone
layer is hydro chlorofluorocarbon refrigerants used in the refriger-
ation and air conditioning industry. More compact equipment with
higher system operating efficiency for air conditioning equipment
has been investigated following the changes in efficiency stan-
dards. Refrigerant mixtures with enhanced surfaces have been
developed as an alternative solution to replace hydro chlorofluoro-
carbon refrigerants. Accurate methods for the determination of the
thermal and fluid-dynamic behaviour of new refrigerants need to
be researched in order to improve the efficiency of heat exchang-
ers. To the design and develop of new equipment, the usage of a
numerical simulation can be an alternative technique besides
experimental investigation. Because of the multidimensionality
of the two-phase flow, analytical and numerical methods present
rather limited solutions, while on the other hand, two-phase flow
through tubes can be treated assuming a one-dimensional flow.
One-dimensional analysis involves empirical knowledge of the
shear stress, heat flux, and two-phase flow structure. Determina-
tion of the heat transfer coefficient is a significant value to obtain
for accurate solutions.

In this paper, studies on in-tube condensation using smooth and
enhanced tubes are intensively reviewed since two-phase flow in
tubes is the most challenging phenomenon in the heat exchanger
systems. All effective possible research subjects of in-tube conden-
sation were classified generally according to the tube orientation
(horizontal, vertical, and inclined tubes) and tube geometry
(smooth and enhanced tubes). Detailed information on the in-tube
condensation studies of heat transfer, pressure drop, flow pattern,
void fraction, and refrigerants in the literature were given. This pa-
per mentions not only the new enhancement techniques of heat
transfer, but also includes some information on the new refriger-
ants. Finally, it is expected to be the pioneer source as an intensive
literature review for in-tube condensation processes.

2. Condensation heat transfer inside tubes

Heat exchangers using in-tube condensation have great signifi-
cance in the refrigeration, automotive and process industries.
Effective heat exchangers have been rapidly developed due to the
demand for more compact systems, higher energy efficiency, lower
material costs and other economic incentives.

Enhanced surfaces, displaced enhancement devices, swirl-flow
devices and surface tension devices improve the heat transfer coef-
ficients in these heat exchangers.

2.1. Tube orientation

2.1.1. Horizontal tubes
Condensation inside horizontal tubes is important in the chem-

ical process and power industries. Shell side condensation is rarely
preferred to tube side condensation when the coolant is air or a
process gas, or when the condensing refrigerant is at high pressure,
dirty or corrosive. For tube side condensers, the horizontal orienta-
tion is most commonly applied.

Dobson and Chato [1] investigated condensation of zeotropic
refrigerants over the wide range of mass flux in horizontal tubes.
They stated that heat transfer coefficient increases with increasing
the mass flux and quality in annular flow due to increased shear
stress and thinner liquid film than in other flow regimes. They used
a two-phase multiplier approach for annular flow. Sweeney and
Chato [2] extended their model for R407C, using mass flux based
modification.

Cavallini et al. [3] presented a theoretical analysis of the con-
densation process and a critical review of a number of correlations
for predicting the heat transfer coefficients and pressure drops for
refrigerants condensing inside various commercially manufactured
tubes with enhanced surfaces. Recently, Cavallini et al. [4] re-
viewed the most recent work in open literature on the condensa-
tion inside and outside smooth and enhanced tubes.
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Recently, Wongwises and Polsongkram [5] compared the aver-
age heat transfer coefficient of condensation process in the heli-
cally coiled concentric tube-in-tube heat exchanger with that in
the straight concentric tube-in-tube heat exchanger at the same
condition and found that the average heat transfer coefficient in
the helically coiled concentric tube-in-tube heat exchanger is 33–
53% higher, while the pressure drop is 29–46% higher.

2.1.2. Vertical–Inclined tubes
Condensation inside vertical tubes occurs usually in nuclear

reactors. In the design of passive containment cooling systems
(PCCS), existence of non-condensable gases inside condensed
steam is an important technical problem. These kinds of condens-
ers have almost 50 mm diameter vertical stainless steel tubes im-
mersed in a tank of water under atmospheric-pressure conditions
outside the containment.

Experimental studies on the heat transfer coefficient of reflux
condensation and gravity controlled cocurrent flow in vertical
tubes were compared with each other in the ESDU data item [6].
Correlations of gravity controlled cocurrent flow can be used for
the reflux situation due to similarity of the data in the ESDU data
item [6] according to the different ranges of the condensate film
Reynolds number such as Nusselt [7] (Re: 67.5), Kutateladze [8]
(7.5 < Re < 400), and Labuntsov [9] (Re > 400), respectively.

Under the assumptions of Nusselt’s theory [7], Hassan and Ja-
kob [10] conducted analytical analysis on the laminar film conden-
sation of saturated vapours on the outside of inclined circular
cylinders. They used experimental results of the heat transfer coef-
ficient for the cocurrent condensation of steam inside an inclined
tube to compare with their analytical results. The analytical results
were 28–100% lower than the experimental results due to the rip-
pling of the condensate film, which is not evaluated in their model.
Besides this, Fieg [11] developed an analytical solution which in-
cludes surface tension effects to obtain the local film thickness
on the outside of an inclined elliptical tube using Nusselt-type
condensation.

2.1.2.1. Cocurrent downward flow. Heat transfer and pressure drop
characteristics of refrigerants have been studied by a large number
of researchers, both experimentally and analytically, mostly in a
horizontal straight tube. The study of the heat transfer and pres-
sure drop of CFCs inside a small diameter vertical tube for down-
ward condensation has received comparatively little attention in
the literature. In addition to this, there are few studies on conden-
sation of R134a during downward flow in vertical micro-fin tubes.
Briggs et al. [12,13] have used large diameter tubes of approxi-
mately 20.8 mm with CFC113. Shah’s correlation [14] has been
compared by researchers commonly for turbulent condensation
conditions, and is considered to be the most comparative conden-
sation model for the annular flow regime in a tube.

Nusselt [7] proposed the first theoretical solution for predicting
heat transfer coefficients. He assumed a linear temperature profile
through a laminar film flowing downwards without entrainment
on a vertical plate. Waves and an interfacial shear effect between
the phases were not considered. Under these conditions, it is pos-
sible for the Nusselt-type analysis to be used for convective con-
densation in round tubes.

Moreover, Rohsenov [15] and Dukler [16] developed a model
which successfully predicts momentum transfer for turbulent film
flow. In addition to this, Levich’s model [17] and Blangetti’s meth-
od [18] have been used in the literature to estimate the local heat
transfer coefficients of the film in the high mass flux region.

Rohsenov [15] and Dukler [16] developed a model to predict
momentum transfer for turbulent film flow. Additionally, Levich
[17] and Blangetti et al. [18] used a model to estimate the local
heat transfer coefficients of the film. An empirical relationship be-
tween the Fanning friction factor and vapour Reynolds number for
an annular flow regime was proposed by Bergelin et al. [19]. They
studied the pressure drop of air water and several organic vapours
for the downward turbulent flow through a vertical 25.4 mm i.d.
tube. Their diagram was used by several researchers, such as
Blangetti et al. [18] and Maheshwari et al. [20], for various refrig-
erants. The diagram takes account of the effect of mass transfer
by including a correction factor developed by Bird et al. [21], con-
sidering the effect of suction in condensation. Krebs and Schlunder
[22] investigated mass transfer coefficients in the turbulent gas
and film flow of a vertical condenser tube in the presence of
non-condensing gases. Kuhn et al. [23] and Peterson et al. [24]
investigated local heat transfer from condensation in the presence
of non-condensable gases inside a vertical tube connecting a pas-
sive containment cooling system (PCCS). They studied the degrada-
tion factor method, diffusion layer theory and mass transfer
conductance model. Recently, Maheshwari et al. [20] followed
the same path and adopted the model, using the analogy between
heat and mass transfer, to the PCCS in nuclear reactors. In their
investigation they considered non-condensable gas with a wide
range of Reynolds numbers. The film waviness effect on the gas/va-
pour boundary layer, the suction effect due to condensation, and
the developing flow and property variation of the gas were also
considered in their study. Local film heat transfer coefficients were
multiplied by a factor of 1.28 for the wave effect between the
phases in the high mass flux region. In addition to this, Oh and
Revankar [25] studied the vertical passive condenser (PCCS) for
complete condensation in nuclear reactors. They used a similar
analysis model as [15–24]. Their model includes a modified Nus-
selt theory with a McAdams correction factor of 1.2 [26], a modi-
fied Blangetti model [18] and an interfacial shear effect from the
Couette flow analysis [27] for small film Reynolds numbers and
small interfacial shear conditions.

Carey [28] studied on the solution of convective condensation
in round tubes during an annular flow regime. He applied Nusselt’s
theory [7] with interfacial shear stress, added new simplified equa-
tions, and offered an iterative technique for the computation of
interfacial shear and the determination of the local heat transfer
coefficients at the end. He assumed constant thermo physical prop-
erties of the refrigerant for condensation, and noted that the pres-
sure drop along the test tube was small. Besides this, he stated that
his analysis was not appropriate for full or partial turbulent film
flow.

Wongwises et al. [29] used Carey’s [28] theoretical model for
downward condensation of R134a to investigate the local and
average heat transfer coefficients in a vertical smooth tube at
low mass flux conditions. The calculated results obtained from
the modified Nusselt model incorporating the interfacial shear
stress, along with the modified Nusselt model with McAdams cor-
rection factor [26] and the classical Nusselt model [7], were com-
pared with the experimental data. Comparisons with laminar
flow at low mass flux data show that the modified Nusselt model
without a correction factor predicts the data well. Experimental re-
sults show that the interfacial shear stress that was incorporated
into the modified Nusselt model affects the condensation process
of R134a in a vertical smooth tube. The classical Nusselt theory
and the McAdams heat transfer coefficient, which includes the
wave effect between the phases, overestimate the data.

2.1.2.2. Reflux flow. Reflux condensation occurs when the vapour
phase of refrigerant enters the condenser tube at the bottom and
flows upward, while the condensate of refrigerant flows downward
countercurrently to the vapour of the refrigerant by means of grav-
itational force. The phenomenon of flooding, in other words, the
onset of flooding or the flooding point, limits the reflux condensa-
tion, and it occurs when some part of the condensate is carried
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upward by the maximum vapour velocity, which is known as the
flooding vapour velocity. Maximum flooding vapour velocity and
the maximum liquid mass flux occur at the vapour inlet in the
event of reflux condensation. Most of the experimental flooding
studies have been performed under adiabatic conditions, which
can not be made directly analogous with those under reflux con-
densation conditions such as the air water combination in rela-
tively large vertical tube diameters.

Mouza et al. [30] studied flooding and used Wallis correlation
[31] for the mixture of air water in a 7 mm i.d. vertical and inclined
0.8 m long glass tube.

English et al. [32] proposed a correlation which is well known in
process industry to predict the flooding point in reflux condensers.

Wang and Ma [33] offered semi-empirical correlation for verti-
cal and inclined thermosyphons. They emphasised the indepen-
dency of optimum inclination angle where the maximum heat
transfer coefficient was obtained from working conditions.

2.2. Tube geometry

2.2.1. Smooth tube
Performance of smooth tubes has been determined by many

researchers with pure refrigerants as operating fluids. Generally,
empirical methods have been offered to compute the condensation
heat transfer coefficients in horizontal smooth tubes. Most of these
proposed models are modifications of the Dittus and Boelter’s sin-
gle-phase forced convection correlation [34], and were modified in
most of proposed models by for instance Akers et al. [35], Cavallini
and Zecchin [36], and Shah [14].

Eckels and Pate [37] made comparison with R134a and R12
on the condensation heat transfer in an 8 mm i.d. smooth tube.
According to their experimental analysis, the condensation heat
transfer coefficient for R12 was 25–35% lower than that for
R134a. Additionally, it should be noted that the condensation
heat transfer coefficients decrease with decreasing the satura-
tion temperature but increase with the mass flux of the
refrigerants.

Torikoshi and Ebisu [38] condensed R134a, R32, and R134a/R32
mixture for the comparison with R22 in an 8.7 mm i.d. smooth
tube. The condensation heat transfer coefficients of R134a and
R32 were 65–10 higher than for R22 respectively. In addition to
this, the pressure drop of R134a was higher than that for R22,
while on the contrary, the pressure drop of R32 was lower than
that for R22. The condensation heat transfer coefficient for the
mixture of R134a and R32 was lower than that for R22, while the
pressure drop was higher than that for R22.

2.2.2. Enhanced tubes
The engineering cognisance of the need to increase the thermal

performance of heat exchanger, thereby effecting energy, material
and cost savings, as well as a consequential mitigation of environ-
mental degradation, has led to the development and use of many
heat transfer enhancement technique. In general, enhancement
techniques can be divided into two groups: namely active and pas-
sive techniques. The active techniques require external forces, e.g.
electrical field, acoustic or surface vibration. A heat transfer
enhancement technique utilising ‘‘electrohydrodynamic” (EHD)
can be achieved by utilising the interaction between the electrical
field and fluid flow in a dielectric fluid medium. This interaction
can result in an increase of fluid motion, which leads to a higher
heat transfer coefficient. Electro-convection is a phenomenon in
which a previously quiescent fluid will start moving in a certain
direction when a strong electric field is applied to the dielectric
permittivity of the fluid. Heat transfer enhancement using the
EHD technique, especially during in-tube condensation, has re-
ceived little attention. The passive techniques require special sur-
face geometries, such as rough surface, extended surface for
liquids etc., or fluid additives. Both techniques have been used by
researchers for 140 years to increase heat transfer rates in heat
exchangers. If two or more of these techniques are utilised to-
gether to achieve enhancement, the term is named as compound
enhancement.

Improvements on condensation heat transfer in horizontal
tubes have been the subject of significant concern in the design
and operation of air conditioning and refrigeration systems. Royal
and Bergles [39] and Luu and Bergles [40] have studied several
enhancement techniques, such as rough surfaces and twisted-tape
inserts, while on the other hand, micro-fin tubes have recently
been used intensively because of their high condensation heat
transfer performance and moderate pressure drop.

2.2.2.1. Micro-fin tubes. The usage of micro-fin tubes has increased
the heat transfer performance of tubes with relatively low pressure
drop increases in commercial and air conditioning applications
since the 1980s. Micro-fins improve the heat transfer in both
single-phase and two-phase applications, and are one of the
most efficient and common heat transfer enhancement mechanism
for the heat exchangers due to their superior heat transfer
performance.

The heat transfer performance of the tubes is increased in an
effective manner by the presence of the micro-fins on the internal
wall surface of the horizontal tubes. Table 1 shows the tube geom-
etries according to researchers [41–71], fin type, average tube
diameter (d), fin pitch (p), fin height (h), fin space (b), fin tip
thickness (t), apex angle (c), helix angle (b), number of fins (n),
tube thickness (w), and augmentation ratio (Amf/As). The detail of
Miyara et al.’s [42] test section is shown in Fig. 1.

Many experimental investigations have been performed to
decide the effects of fin geometry, tube diameter, refrigerant, etc.
on the condensation heat transfer and pressure drop performance
of the micro-fin tubes. The presence of the micro-fins inside the
tube enhances the heat transfer providing improved and increased
surface area. They cause not only uniform liquid film distribution
around the circumference of the tube, but also turbulence induced
in the liquid film.

This enhancement has been denoted by many researchers, for
instance Cavallini et al. [72], Yu and Koyama [73], and Kedziersky
and Goncalves [74]. Cavallini et al. [72] stated that heat transfer
enhancement from 80% to 140% is achieved, with an increase in
pressure drop from 20% to 80% due to micro-fin tubes in compar-
ison with equivalent smooth tubes under the same operating
conditions. Analogously, Yu and Koyama [73] pointed out that
the heat transfer enhancement in a horizontal micro-fin tube is
twice that of a smooth tube with the same inner diameter due to
the increase in heat transfer area. Kedziersky and Goncalves [74]
tested R134a, R410A, R125, and R32, and demonstrated heat trans-
fer enhancement using their correlation due to the fins behaving as
a surface roughness in micro-fin tubes.

The most common passive heat transfer enhancement tech-
nique nowadays for condensers is the use of helical micro-fin
tubes. Liebenberg et al. [75], Liebenberg and Meyer [76] conducted
experiments using 8.9 mm i.d. helical micro-fin tubes, and found
that heat transfer coefficient of micro-fin tubes twice that of a
smooth tube.

The herringbone tube, consisting of a double chevron-shape
with embossed micro-fins was developed as a new generation of
micro-fin tube in the 1990s. Olivier et al. [77] showed the differ-
ence in liquid distribution with helical micro-fin tubes. According
to their experimental results, the distribution of liquid at the top
inside the tube is lower than that at the bottom, due to gravity,
especially at low velocities. Miyara et al. [42] found a heat transfer
enhancement, as shown in Fig. 2, up to 350%, and showed the



Table 1
Tube geometries for condensation inside micro-fin tubes made of copper.

Researchers Fin type do (mm) p (mm) l (mm) b (mm) t (mm) c (�) b (�) n w (mm) Amf/As

Miyara et al. [41,42] Helical 7 0.41 0.21 0.2 0.07 41 18 50 0.25 1.83
Islam and Miyara [43] Herringbone 7 0.34 0.22 0.22 0.05 18 16 60 0.25 2.19

Helical 7 0.41 0.21 0.2 0.07 41 18 50 0.25 1.81
Herringbone 7 0.35 0.22 0.23 0.05 18 16 58 0.25 2.15
Herringbone 7 0.35 0.18 0.15 0.09 33 14 59 0.27 1.83
Herringbone 7 0.33 0.17 0.18 0.09 20 8 62 0.22 1.93
Herringbone 7 0.35 0.16 0.16 0.1 33 14 58 0.27 1.74
Herringbone 7 0.4 0.2 0.25 0.1 15 28 50 0.28 2.02
Herringbone 7 0.33 0.14 0.17 0.12 17 8 61 0.28 1.78

Cho and Tae [44] – 9.52 8.53 – 0.2 – – 18 60 – 1.51

Eckels and Pate [45] – 9.52 – 0.2 – – 50 15 60 0.4 –
Eckels et al. [46,47] – 9.52 – 0.2 – – 50 18 60 0.3 –
Eckels and Tesene [48] – 12.7 – 0.2 – – 50 17 60 0.4 –

– 9.52 – 0.2 – – 50 17 60 0.3 –
– 9.53 – 0.203 – – 51 18 60 0.305 –
– 15.88 – 0.305 – – 45 27 60 0.605 –
– 7.94 – 0.203 – – 57 18 50 0.3 –

Nualboonrueng et al. [49] – 9.52 – 0.2 – – 52.45 18 60 0.7 –

Uchida et al. [50] – 7 – 0.163 – – 40 18 60 0.3 –

Goto et al. [51–53] Helical 8 – 0.28 – – 32 37 – – –
Cross micro-fin 8 – 0.28 – – 29.6 23.17 – – –
Helical 8.01 – 0.17 – – 55 18 55 0.27 1.498
3d micro-fin 8.01 – 0.2 – – 55 18 – – –
Herringbone 8 – 0.24 – – 18 18 60 – 2.032
– 9.52 0.17 – – 50 25 – – –
– 6.35 0.14 – – 50 16 – – –

Shinohara and Tobe [54] – 9.52 – 0.12 – – 35 7 60 0.3 –
– 9.52 – 0.2 – – 50 25 60 0.3 –
– 9.52 – 0.2 – – 90 25 60 0.3 –
– 9.52 – 0.12 – – 35 7 65 0.3 –
– 9.52 – 0.2 – – 50 25 65 0.3 –

Hitachi [55] – 9.5 – 0.2 – – 40 17 60 0.28 –
– 9.52 – 0.21 – – 53 18 60 0.29 –

Graham et al. [56] Helical 9.52 – 0.18 – – – 18 60 – 1.62
Axial grooved 9.52 – 0.18 – – – 0 60 – 1.62

Bogart and Thors [57] – 9.53 – 0.203 – – 50 18 60 0.33 –
Ebisu and Torikoshi [58] – 7 – 0.18 – – 40 18 50 0.3 –
Wang and Honda [59] – 9.5 0.53 0.24 – 0.004 30.5 20 47 – 1.49
Wang et al. [60] – 10 0.42 0.16 – 0.027 19.9 18 60 – 1.52

– 9.5 0.44 0.19 – 0.015 22.3 18.7 60 – 1.51
– 7 0.39 0.21 – 0.019 19.1 18 50 – 1.71
– 7 0.34 0.19 – 0.018 13.1 18 60 – 1.78
– 7 0.4 0.22 – 0.037 12.7 12 50 – 1.83
– 7 0.39 0.15 – 0.017 22.1 15 50 – 1.48
Helical 7 0.4 0.24 – 0.021 15.6 13 50 – 1.87
Helical 9.5 0.45 0.2 – 0.01 23.7 18 60 – 1.52

Tang et al. [61] – 9.52 – 0.2 – – 15 0 60 0.36 –
– 9.52 – 0.2 – – 40 18 72 0.36 –

Schlager et al. [62,63] – 9.52 0.44 0.2 – – 50 18 60 0.4 1.5
– 9.52 1.21 0.38 – – 10 30 21 0.5 1.8
– 9.52 – 0.2 – – 40 18 60 0.3 –
– 9.52 – 0.15 – – 40 25 60 0.3 –

Yasuda et al. [64] – 9.52 – 0.2 – – 40 18 60 0.3
– 9.52 – 0.25 – – 40 18 60 0.3
– 7.94 – 0.2 – – 30 18 50 0.3
– 7.94 – 0.25 – – 30 18 50 0.3

Muzzio et al. [65,66] – 9.52 – 0.15 – – 40 18 54 0.3 –
– 9.52 – 0.23 – – 90 25 65 0.34 –

Chamra et al. [67] – 15.9 – 0.2 – – – 15 60 – –
– 15.88 – 0.35 – – 30 15 74 0.5 –
– 15.88 – 0.35 – – 30 27 80 0.5 –

Nozu and Honda [68] – 9.53 – 0.24 – – 63 20.05 47 0.2 1.49
– 9.5 – 0.16 – – 87 24 65 0.19 1.32
– 10 0.42 0.35 – 0.05 27.5 18 60 – –

Koyama et al. [69,70] – 7.52 – 0.19 – – – 19 50 – 1.62
– 9.52 – 0.18 – – 25 25 70 0.33 1.67
– 9.52 – 0.15 – – – 30 60 0.6 –
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Fig. 2. Effect of helix angle on heat transfer coefficients. [From Miyara et al. [42],
with permission from Elsevier.]

Fig. 1. Cross-section of fin [From Miyara et al. [42], with permission from Elsevier.]
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minor effect of tube orientation on the heat transfer and pressure
drop and reported that the effect of fin height and helix angle are
important. They noted that heat transfer and pressure drop in-
crease with increasing helix angle. According to their analysis, heat
transfer and pressure drop increase using micro-fin tubes whose
fin heights are up to 0.18 mm, on the other hand, they found neg-
ligible heat transfer enhancement with increased pressure drop
using micro-fin tubes whose fin heights are greater than 0.18 mm.

Palen et al. [78] focused on the complexity of flow characteris-
tics of liquid in horizontal micro-fin tubes due to the effect of sur-
face tension, gravitational force and vapour shear force. Combined
surface tension and gravitational forces help the draining of con-
densate that has occurred on a fin surface into the spiral groove,
then the vapour shear force assists in driving the condensate
through the groove in the downstream direction. In a high mass
flux region, the effect of gravitational force may not be important,
on the other hand, in a low mass flux region the gravitational force
can cause stratification of condensate in the lower part of the tube.

Khanpara et al. [79] tested CFC113 in a total of eight kinds of
9.5 mm o.d. micro-fin tubes, and the best performing tubes accord-
ing to their studies had 65 fins. Schlager et al. [80] conducted
experimental studies with three 9.52 mm o.d. and three 12.7 mm
o.d. micro-fin tubes, and showed the best performing tubes. Hori
and Shinohara [81] used 20 micro-fin tubes with different diame-
ters ranging from 4 to 12.7 mm o.d. to decide the best performing
tube for each diameter. Haraguchi [82] tested three different
refrigerants to show the axial variation of the heat transfer
enhancement factor in a micro-fin tube. He also derived a correla-
tion on the local frictional pressure gradient.

Nualboonrueng et al. [83] investigated the two-phase heat
transfer coefficients of pure HFC-134a condensing inside horizon-
tal smooth and micro-fin tubes experimentally. According to their
results, the average heat transfer coefficient for the 9.52 o.d. micro-
fin tube is 10–85% higher than that for the smooth tube.

2.2.2.2. Micro-channel tubes. In view of the growing trend in the
industry for better heat transfer performance, compact heat
exchangers have been developed not only to reduce their size
using micro-channel tubes, but also untapped applications such
as high ambient air conditioning, hazardous duty, portable per-
sonal cooling devices and medical devices will benefit from a fun-
damental understanding of condensation at the micro-scales.

Feng and Serizawa [84] noted the importance of surface forces
over those of body forces, surface characteristics and the interac-
tions between the fluid and the wall due to increase in surface area
using micro-channels. In addition to this, gravitational forces are
dominated by surface tension and viscous forces in micro-chan-
nels. It should be noted that, according to observations in the liter-
ature, two-phase flow phenomena and flow regime characteristics
in micro-channels are quite different from in the conventional lar-
ger diameter tubes. This is due to changes in the relative magni-
tudes of gravity, shear, and surface tension forces. The flow
regime is determined by surface tension forces according to the
combination of liquid and vapour-phase velocities. For these rea-
sons, the correlations of large round tubes such as in Lockhart
and Martinelli [85], Chisholm [86], Traviss et al. [87], and Shah
[14] to determine the heat transfer coefficient and pressure drop
may not be suitable for micro scale condensation with their large
error bands. Besides this, heat transfer coefficient and pressure
drop depend indirectly on local vapour quality. The relation be-
tween two-phase flow pattern and its effect on heat transfer and
pressure drop should be known in order to achieve accurate design
of heat exchangers for condensation. Determination of flow regime
based correlation is important for that reason.

Recently, Park et al. [88] reported that R290 has a higher con-
densation heat transfer coefficient than R22 and R134a in an alu-
minium multi-channel flat tube. Guo and Anand [89,90] studied
the prediction of condensation heat transfer coefficient related
with two-phase flow regimes inside a rectangular channel using
R410A in a continuing study.

2.2.2.3. Corrugated tubes. The heat transfer coefficient can be in-
creased by means of corrugation inside the tube in turbulent flow
by mixing the flow boundary layer, and also by increasing the tur-
bulence level of the fluid flow. Corrugated tubes may be used in the
production of shell-and-tube industrial heat exchangers. The usage
of corrugated tubes instead of smooth tubes can reduce the size of
these heat exchangers. Several researchers used corrugated tubes
for heat transfer enhancement in the literature. Mimura and
Isozaki [91] investigated the heat transfer and pressure drop
characteristics of corrugation in terms of the shapes of corrugation
with different relative depths and relative pitches. Ganeshan and
Rao [92] focused on the heat transfer and friction factor character-
istics of single and multi-start spirally corrugated tubes. Asako and
Nakamura [93] analysed the heat transfer and pressure drop
characteristics of corrugated ducts with rounded corners in
terms of three corrugation tube angles and four aspect ratios
numerically.



Fig. 3. Front and side view of the corrugated tube. [From Barba et al. [95], with
permission from Elsevier.]
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Dong et al. [94] investigated the turbulent friction and heat
transfer characteristics of four spirally corrugated tubes using var-
ious geometrical parameters. They found that the spirally corru-
gated ribs enhance the heat transfer, but not as greatly as the
increases in friction. Barba et al. [95] studied the heat transfer
and pressure drop in a corrugated tube experimentally, as shown
in Fig. 3, during single-phase flow at moderate Reynolds numbers
(100 < Re < 800) using ethylene glycol as a testing fluid. The Nus-
selt number of the corrugated tube increased in comparison to
smooth tube, while the friction factor increased by a factor of
2.45–1.83. Rainieri and Pagliarini [96] investigated the thermal
performances of axial symmetrical and helical corrugated tubes
with different pitch values for the enhancement of the convective
heat transfer. The Reynolds number’s range was between 90–800.
They found that the helical corrugation causes important swirl
components, to which, however, an equally important heat trans-
fer enhancement is not associated.

Zimparov [97] performed the most productive studies on the
extended performance evaluation criteria for enhanced heat trans-
fer surfaces. Zimparov [98,99] investigated heat transfer and iso-
thermal friction pressure drop results of spirally corrugated tubes
combined with five twisted tape inserts with different relative
Fig. 4. Comparison of heat transfer coefficients for tubes with-coiled wire
pitches, and found that the friction factor and heat transfer coeffi-
cients belonging to these tubes were higher than those from the
smooth tube. Zimparov [100,101] developed a simple mathemati-
cal model to predict the friction factor and heat transfer coefficient
during fully developed turbulent flow using a spirally corrugated
twisted tape inserted tube. Vicente et al. [102,103] performed
experiments on the mixed convection heat transfer and isothermal
pressure drop in corrugated tubes in cases of laminar, transition
and turbulent flows. According to their results, the Nusselt num-
bers of these enhanced tubes are 30% higher than those for the
smooth tube at high Rayleigh numbers, however, the friction fac-
tors were 5–25% higher than those for the smooth tube.

2.2.2.4. Tube with wire insert. Heat transfer enhancement tech-
niques can improve the heat transfer duty or thermal performance
of heat exchangers. Passive enhancement techniques for in-tube
enhancement during two-phase and single-phase flows are cur-
rently the majority of commercially available ones in several heat
transfer applications, for example, heat recovery processes, air
conditioning and refrigeration systems, chemical reactors, and
food and dairy processes. Helical wire inserts, coiled wire inserts,
internal threads, corrugated tubes, and twisted tape inserts cause
turbulence and/or swirl flow as rough surfaces which can incur sig-
nificant pressure drop penalties. These rough surfaces, apart from
the wire inserts, are not common applications in refrigeration sys-
tems due to their pressure drop penalties which can be greater
than the heat transfer enhancements.

High-profile fins, helical micro-fins, annular offset strip ribbon
fins, and inter-secting fins are commonly used as extended sur-
faces, and these techniques are more preferred in the refrigeration
industry than the passive techniques mentioned above.

Prasad and Shen [104,105] tested 12 different wire-coil inserts
during turbulent flow and offered a new criterion for the determi-
nation of passive heat transfer enhancement. Ravigururajan and
Bergles [106] proposed some correlations to obtain friction factor
and heat transfer coefficient during single-phase turbulent flow
in internally enhanced tubes. Kang et al. [107] studied flooding in
a fluted tube with a twisted tape insert and proposed a correlation
inserts. [From Agrawal et al. [109], with permission from Elsevier].
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for the effects of the twisted tape insert and the angle of inclina-
tion. Al-Fahed et al. [108] used plain, micro-fin, and twisted tape
insert tubes to compare the pressure drop and heat transfer coeffi-
cients. Agrawal et al. [109] tested forced convection condensation
of R-22 experimentally to study the heat transfer enhancement in-
side horizontal coiled wire inserted tubes shown in Fig. 4. Liao and
Xin [110] focused on the heat transfer and friction characteristics
of water, ethylene glycol, and ISO VG46 turbine oil flowing inside
passive enhanced tubes. Kim et al. [111] conducted visualisation
experiments for the determination of the flow pattern, void frac-
tion and slug rise velocity during counter-current two-phase flow
in a vertical round tube with wire coil inserts. Wang and Sund
[112] examined the heat transfer enhancement techniques in heat
exchangers. Rahai and Wong [113] performed experiments to
examine the turbulent jets in coil inserted round tubes. Zimparov
[100,101] developed a simple mathematical model to determine
heat transfer coefficients and friction factors, and validated it with
experimental data in a spirally corrugated tube combined with a
twisted tape insert during fully developed turbulent flow. Ozcey-
han [114] used a finite-difference scheme to solve the energy
and governing flow equations on the conjugate heat transfer and
thermal stress in a wire coil inserted tube.

3. Flow pattern of condensation

Observed two-phase flow patterns in a condensation process
which tends to wet the top of the tube wall in all flow regimes
are slightly different from adiabatic or evaporating conditions.

The orientation and interaction of the liquid and vapour phases
inside the tubes is one of the most significant characteristics of
two-phase flow. This phenomenon is related to flow regime and
flow pattern. Different flow patterns may occur depending on the
tube position, the geometry of the tube, flow rates and physical
properties of the two phases. Generally, a set of phases includes
bubble flow, slug flow, churn flow, annular flow, and droplet flow
for most of the significant liquid vapour flow regimes.

Annular flow conditions along the tube length include convec-
tive condensation which occurs for many applications inside tubes.
Annular two-phase flow is one of the most important flow regimes,
and is characterised by a phase interface separating a thin liquid
film from the gas flow in the core region. Two-phase annular flow
occurs widely in film heating and cooling processes, particularly in
power generation, and especially in nuclear reactors. This flow re-
gime has received the most attention, both analytically and exper-
Fig. 5. Video images of condensing R134a at various mass fluxes in a smooth
imentally, because of its practical importance and the relative ease
with which analytic treatment may be applied. In addition to this,
condensate distribution inside the tube wall is almost symmetric,
and there is high velocity vapour flow in the core during annular
flow.

Stratified flow occurs at very low vapour velocities in a horizon-
tal tube, in other words, when the mass flux of refrigerant de-
creases. In this situation, the condensate is seen on the upper
portion of the tube wall and driven downward by gravity, and col-
lects at the bottom of the tube.

There are other flow patterns, such as annular-mist flow with a
mixture of vapour and mist in the core flow; slug flow exists when
interfacial waves grow sufficiently to block the entire cross-section
at some transversal sections; and wavy flow occurs when the
waves affect the vapour and exists on portion of the tube wall near
the interface between the liquid pool and the vapour. Also, there
are some subcategories of these flow patterns in relation to the
transition between phases. Investigations of flow regime maps
for condensation inside tubes have been conducted by many
researchers, including Dobson et al. [115], Baker [116], Traviss
and Rohsenow [117], Mandhane et al. [118], Taitel and Dukler
[119], Palen et al. [78], Breber et al. [120], and Soliman [121,122].
Moreover, visualization of flow transitions is done by Liebenberg
and Meyer [76] and their study can be seen from Fig. 5.

Although most of these flow regime maps were worked up for
adiabatic two-phase flows, they are often used for the diabatic pro-
cesses of evaporation and condensation. For that reason, reliable
results may not be produced in some applications. Taitel and Duk-
ler [119] provided a good review for a description of flow regime
transition theory.

3.1. Horizontal tubes

It is possible to divide flow patterns into two groups in horizon-
tal tubes: those that appear at high void fractions (a > 0.5), and
those that appear only at low void fractions (a < 0.5). The first
group has five flow patterns: stratified flow, wavy flow, wavy-
annular flow, annular flow, annular-mist flow. The second group
has three flow patterns: slug, plug, and bubbly flow. The five flow
patterns shown in Fig. 6 occur gradually with increase in the va-
pour velocity. The three flow patterns in the second group appear
with an increase in the liquid inventory (or a decrease in a).

There are numerous proposed flow pattern maps in the litera-
ture to predict two-phase flow pattern transitions in horizontal
tube. [From Liebenberg and Meyer [76], with permission from Elsevier].
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tubes under adiabatic and diabatic conditions, and several flow re-
gime based heat transfer models proposed by Shao and Granryd
[123] and Cavallini et al. [124]. El Hajal et al. [125] adapted Kattan
et al.’s [126] flow-boiling two-phase flow pattern map for conden-
sation inside horizontal tubes. El Hajal et al. [125] and Collier and
Thome [127] studied the prediction of void fractions by a new
method based on flow regime at pressures between the atmo-
sphere and near the critical pressure, and presented a new heat
transfer model using HFC and HFC fluids. Thome [128] modified
Steiner’s [129] map, which in turn benefited from Taitel and Duk-
ler’s [119] map.

3.2. Vertical tubes

Several recognisable flow structures are seen through the distri-
bution of the liquid gas phases for cocurrent upflow of the phases
in a vertical tube such as bubbly flow, slug flow, churn flow, annu-
lar flow, wispy annular flow, mist flow.

Vertical upward gas–liquid two-phase annular flow is encoun-
tered in several industrial applications, including the flow of refrig-
erants in air conditioning and refrigerating systems, the flow of oil
and gas in petroleum industries, and the flow of steam in power
Fig. 7. Varation of heat transfer coefficient of R410A with wetne
plants, e.g. in emergency core cooling (ECC) systems of a nuclear
reactor during the postulated loss of coolant accidents (LOCA).
Annular two-phase flow is one of the most important flow regimes,
and is characterised by a phase interface separating a thin film
from the gas flow in the core region. Because of its practical impor-
tance and the relative ease with which analytic treatment may be
applied, this flow regime has received the most attention both ana-
lytically and experimentally. In this flow regime, it is generally true
that due to the break up of the disturbance wave, part of a liquid
phase is entrained as droplets into the gas core. It is also accepted
that mass, momentum and energy transfers are strongly affected
by entrainment of the droplets to the gas core.

The most widely recommended flow pattern maps for vertical
tubes are Fair [130] and Hewitt and Roberts [131].

4. Refrigerants

Since the depletion of the earth’s ozone layer has been discov-
ered, many corporations have been forced to find alternative
chemicals to chlorofluorocarbons (CFCs). Because the thermophys-
ical properties of HFC-134a are very similar to those of CFC-12,
refrigerant HFC-134a has been receiving support from the refriger-
ation and air-conditioning industry as a potential replacement for
CFC-12 since the Kyoto protocol [132] in 1997. However, even
though the difference in properties between the two refrigerants
is small, it may result in significant differences in the overall sys-
tem performance. Therefore, the properties of HFC-134a should
be studied in detail before it is applied.

The use of natural refrigerants such as hydrocarbons is one of
the possible solutions to avoid CFCs, HCFCs and HFCs. In spite of
the prohibition of flammable hydrocarbon refrigerants few dec-
ades ago in normal refrigeration and air-conditioning applications
due to a safety concerns, according to Kruse [133] and Jung et al.
[134]some of the flammable refrigerants have been used in the
certain applications. Recently, isobutane (R600a), propane (R290)
and propylene (R1270) have been used for such heat transfer
applications as in refrigerators, freezers, and heat pumps. Besides
this, R429A and R432A including dimethyl ether (DME, RE170),
are proposed as alternatives for R134a and R22.

Koyama et al. [69] developed a correlation for the condensation
heat transfer coefficient using a new zeotropic mixture of HCFC22/
CFC114 in a horizontal micro-fin tube.

Cavallini et al. [135] focused on heat transfer degradation due to
new refrigerant mixtures emphasising the importance of mass
transfer diffusion, sensible heating effects, and non-equilibrium ef-
fects in two-phase flow. They condensed R134a, R236ea and R410A
ss. [From Miyara et al. [41], with permission from Elsevier].
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Table 2 (continued)

Void fraction model/correlation Model/correlation
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Y

1þ CY
� CY

� �1=2

K1 ¼ 1:578þ Re�0:19
1

q1

qg

 !0:22

C ¼ 0:0273We1Re�0:51
1

q1

qg

 !�0:08

Y ¼ b�

1� b�

We1 ¼
G2d
rq1g

Re1 ¼
Gd
l1

b� ¼ 1

1þ 1�x
x

� � qg

q1

� �

Kawahara et al.’s correlation [165] a ¼ C1a0:5
h

1� C2a0:5
h

C1 ¼
0:03 for d ¼ 100 lm
0:02 for d ¼ 50 lm

	

C2 ¼
0:97 for d ¼ 100 lm
0:98 for d ¼ 50 lm

	
d > 250 lm a ¼ aH

Graham et al.’s correlation [56] Ft > 0:01032 a ¼ 1� expð�1� 0:3 lnðFtÞ � 0:0328ðlnðFtÞÞ2Þ

Ft < 0:01032 a ¼ 0 Ft ¼
x3G2

q2
g gdð1� xÞ

 !1=2

Hughmark’s model [166] a ¼ KH

1þ 1�x
x

� � qg

ql

� � KH ¼ 0:71þ 0:0001P

Hamersma and Hart’s correlation [167] a ¼ 1þ 0:26
1� x

x

� �0:67 qg

ql

� �0:33
 !�1

Bangkoff’s correlation [168]
a ¼ ½0:71þ ð0:0145ÞP�aH

(continued on next page)
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Table 2 (continued)

Void fraction model/correlation Model/correlation

Czop et al.’s correlation [169]
a ¼ �0:285þ 1:097aH

Tandon et al.’s model [170]
50 < Rel < 1125 a ¼ 1� 1:928

Re�0:315
l

FðXÞ þ 0:9293
Re�0:63

l

FðXÞ2

Rel > 1125 a ¼ 1� 0:38
Re�0:088

l

FðXÞ þ 0:0361
Re�0:176

l

FðXÞ2

Rel ¼
Gd
ll

X ¼ 1� x
x

� �0:9 qg

ql

� �0:5 ll

lg

 !0:1

FðXÞ ¼ 0:015
1
X
þ 2:85

X0:476

� �

Huq and Loth’s correlation [171] a ¼ 1� 2ð1� xÞ2

1� 2xþ 1þ 4xð1� xÞ ql
qg
� 1

� �h i0:5

Armand and Massina’s correlation [172] a ¼ ð0:833þ 0:167xÞaH

Chisholm and Laird’s correlation [173] a ¼ 1þ 0:8 1þ 21
X
þ 1

X2

� �
� �1:75

Steiner’s correlation [174]
a ¼ x

qg
1þ 0:12ð1� xÞ½ � x

qg
þ 1� x

ql

" #
þ

1:18ð1� xÞ½grðql � qgÞ�
0:25

Gq0:5
l

 !�1

Harms et al.’s model [175] a ¼ 1� 10:06Re�0:875
l ð1:74þ 0:104Re0:5

l Þ
2 1:376þ 7:242

X1:655

� ��1=2
" #2

Chisholm and Armand’s correlation [176] a ¼ 1

aH þ ð1� aHÞ0:5
aH

Armand and Treschev’s correlation [177] a ¼ 0:833aH
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in a multiport mini-channel tube, and reported that the pressure
drop of R236ea had the largest value among the tested refrigerants,
while the pressure drop of R-410A was significantly lower than
those of R-134a and R236ea under the same conditions.

Sami and Poirier [136] condensed and evaporated the refriger-
ants of R-410A, R-410B, R-507 and the mixture of R-32/125/
143a/134a to determine the two-phase heat transfer coefficients
and pressure drops inside enhanced-surface tubings.

Ebisu and Torikoshi [137] measured the condensation heat
transfer coefficients using R-410A, R-407C and R-22 in a horizontal
smooth tube, and noted that the condensation heat transfer coeffi-
cient of R-22 was slightly higher than that of R-410A, while on the
other hand, pressure drop of R410A was about 30% lower than that
for R-22 due to the differences in vapour density of the two
refrigerants.

Wijaya and Spatz [138] tested R-22 and R-410A to compare the
heat transfer characteristics of these refrigerants flowing inside
horizontal smooth copper tube.
Miyara et al. [41] studied the comparison of condensation heat
transfer shown in Fig. 7, and pressure drop of R-410A and R-22
using a herringbone-type and helical-type micro-fin tube, and
found that both of the refrigerants’ condensation heat transfer
coefficient and pressure drop in the helical micro-fin tube were
lower than in the herringbone-type micro-fin tube in the higher
mass velocity region.

Chitti and Anand [139] investigated the condensation heat
transfer coefficients of R410A and R22, and showed that the con-
densation heat transfer coefficient of R410A was about 15–20%
higher than that of R22 flowing inside smooth horizontal tubes.

4.1. Effects of oil

Numbers of researchers have investigated the effect of refriger-
ation oils on condensation heat transfer. Degradation of the
condensation heat transfer coefficient has been reported due to
the presence of refrigeration oil. The mixture of small amounts of
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compressor lubricant in the refrigerant is a typical problem in va-
pour compression refrigeration systems. This mixture affects the
performance of the condenser and influences the all system perfor-
mance for that reason.

Chato [140] investigated the influence of oil on condensation
using refrigerants CFC12 and HCFC22, and reported a reduction
in heat transfer coefficient due to the mixture of oil-refrigerant. Ti-
chy et al. [141] noted 10% and 23% degradation in the heat transfer
of CFC 12, testing 2% and 5% 300 SUS napthenic based oil concen-
trations, respectively. Schlager et al. [80] stated a 13% reduction in
the heat transfer with 5% lubricant and 150 SUS napthenic oil in
the mixture for the condensation of HCFC 22. Eckels and Pate
[37] reported a drop of approximately 10% in the heat transfer
for CFC12 at 5% 150 SUS napthenic oil mixture, but on the other
hand, no important effect on the heat transfer coefficient of
HFC134a at 165 SUS PAG oil. Shao et al. [142–144] reported that
he added ester based oil to the refrigerant at the concentration of
2% and %5 respectively. As a result of his studies, value of the con-
densation heat transfer coefficient of R134a decreased 10–20% due
to usage of ester based oil with the refrigerant inside the con-
denser. Boissieux et al. [145] and Meyer and Dunn [146] focused
on the oil effects on condensation heat transfer of R404A in hori-
zontal smooth and micro-fin tubes. They reported heat transfer
enhancements for R404A up to oil concentrations of 3%. Sur and
Azer [147] reviewed some correlations to predict the effect of oil
on the heat transfer performance of the refrigerant in smooth
and micro-fin tubes. Cavallini et al. [148] condensed refrigerant-
oil mixtures inside tubes, and noted that the heat transfer coeffi-
cient decreases with increasing oil concentration in all the geome-
tries tested. Dobson and Chato [1] proposed a correlation for the
increase in pressure drop in smooth tubes due to the existence of
oil in the system.
5. Void fraction

Void fraction, defined as the cross-sectional area occupied by the
vapour in relation to the area of the flow channel, is an important
parameter and is always used to determine the flow pattern transi-
tion, heat transfer coefficient and two-phase pressure drop. Two-
phase separated flow is commonly analysed using the slip flow
model. In this model, it is assumed that the seperated phases have
different uniform velocities. By contrast, the homogeneous model
is defined as an ideal case, as it assumes a homogeneous mixture
providing uniform velocities for both phases, for that reason, it is
the simplest method for the determination of void fraction.

Over the years, many studies have been conducted on the mod-
elling of void fractions, and can be divided into several groups: slip
ratio void fraction models and correlations [86,149–159], Lockhart
and Martinelli parameter based void fraction models and correla-
tions [85,125,160,31,161–165], flow regime based void fraction
models and correlations [56,166,167], KeH parameter based void
fraction and correlations [168–170], and general void fraction
models and correlations [171–177]. A brief and comprehensive
overview of these works is presented in Table 2.

However, there is lack of void fraction correlations on the con-
densation inside micro-fin tubes in the literature. Determination of
void fraction in a micro-fin tube is an important design and oper-
ating parameter for the heat exchanger, and it is necessary to cal-
culate the amount of refrigerant charge in the evaporator and
condenser. Therefore, it still preserves its importance and it is a
worthwhile subject to investigate, but there have been limited
investigations in open literature until now. Yashar et al. [162] per-
formed experimental studies on condensation and evaporation in-
side smooth and micro-fin tubes, and proposed a correlation to
predict void fraction of R134a and R410A.
Dalkilic et al. [178,179] benefited from Table 2 to investigate the
effect of void fraction models on the condensation friction factor
and film thickness of R134a in vertical downward flow at high
mass flux in a smooth tube.

6. Condensation pressure drop inside tubes

The two-phase pressure drop is a significant design parameter
in many engineering applications, such as in the chemical process
industry, nuclear industry, petroleum industry, refrigeration and
air conditioning applications, and space applications. There have
been a number of investigations into this subject in the literature
due to its importance. The frictional, acceleration, and gravitational
components form the two-phase total pressure drop in tubes.
Determination of void fraction is necessary for computing the
acceleration and gravitational components, and in a similar way,
determination of either the two-phase friction factor or the two-
phase frictional multiplier is necessary for computing the frictional
component of pressure drop.

The Lockhart and Martinelli [85], Chisholm [86], and Friedel
[180] correlations are generally used for the determination of pres-
sure drop in conventional channels. Some modifications to account
for the specific geometry or flow conditions are made in these cor-
relations. In spite of their large deviations from the data for small
channels in the condensation process, they are still used as the ba-
sis for many of the recent correlations.

6.1. Smooth tube

6.1.1. Vertical tubes
Heat transfer and pressure drop characteristics of refrigerants

have been studied by a large number of researchers, mostly in hor-
izontal tubes. Generally, empirical methods are most often used to
compute the pressure drop during condensation by using pure
refrigerants as working fluids. The study of the pressure drop of
refrigerants during downward condensation in small diameter ver-
tical tubes has received comparatively little attention in the litera-
ture. A brief summary of pressure drop studies of downward
condensation is given as follows:

Goodykoontz and Dorsch [181] investigated the local conden-
sation heat transfer coefficients and pressure distribution of
R113 for the mass fluxes of 21–455 kg m�2 s�1 in 7.4–15.9 mm
i.d. vertical tube. Kim and No [182] developed a turbulent film
condensation model including pressure drop for high pressure
steam in 46 mm i.d. vertical tube. Ma et al. [183] studied the
two-phase friction factors of downward R113 flow for mass fluxes
from 400 to 800 kg m�2 s�1 in 20.8 mm i.d. smooth and finned
tube.

Akers et al. [35] developed a two-phase multiplier which as-
sumes that two-phase flows are similar to single-phase flows.
Their correlation predicts frictional two-phase pressure drop by
means of a multiplying factor, which is the same rationale as
the Lockhart-Martinelli multiplier [85]. Their model is known as
‘equivalent Reynolds number model’. It can be used for an annular
flow regime which can be replaced by an equivalent all liquid
flow. According to this model, the equivalent all liquid flow pro-
duces the same wall shear stress as that of the two-phase flow.
Several latest researchers have used this model, for example, Ma
et al. [183] whose study can be seen from Fig. 8 and Moser
et al. [184].

Dalkilic et al. [185] discussed and investigated the effects of var-
ious relevant parameters on the condensation pressure drop such
as condensing temperature, condensation temperature difference,
vapour quality and mass flux. They developed a new correlation
of the two-phase friction factor, determined using the equivalent
Reynolds number model from a large amount of data.



Fig. 8. Friction pressure drop for various tube configuration. [From Ma et al. [183],
with permission from Elsevier].

Fig. 9. Friction pressure drop for various tube configuration. [From Ma et al. [183],
with permission from Elsevier].
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6.1.2. Inclined tubes
According to the ESDU Data Item [5], pressure recovery can be

ignored in calculations of the total pressure drop in the event of
reflux condensation. There are not enough studies on pressure
drop for the case of reflux condensation in inclined, small diame-
ter tubes during reflux condensation in the literature. Russell
[186] investigated the pressure drop of steam in a 5 m long,
19.8 mm i.d. tube at a slope of 57� to the horizontal for reflux
condensation. Schoenfeld and Kröger [187] reported a study on
the pressure drop of steam during reflux condensation, using
7 m long elliptical inclined tube at 60� to the horizontal. Stephan
[188] condensed R12 for the pressure drop of an adiabatic falling
film flow during reflux condensation in a vertical rectangular
channel. Thumm [189] focused on the friction factor for the reflux
flow of steam in saturated and adiabatic conditions using
28.2 mm i.d. vertical tube. Chen et al. [190] proposed a better cor-
relation than the Lockhart–Martinelli correlation [86] for their
closed two-phase thermosyphon system. Abdelmessih et al.
[191] used Chen et al.’s [190] correlation for the prediction of
pressure drop in a vertical shell-and-tube condenser. Brauer
[192] determined the friction factor of a falling film proposing a
calculation method during reflux flow. Thumm [189] used Bra-
uer’s [192] correlation to predict the friction factor during reflux
flow, and pointed out that, according to his data, it is more suit-
able than correlations proposed by Hadley [193] or Andreussi
[194].

6.1.3. Horizontal tubes
Condensation of refrigerants R12, and R22 with a small fraction

of lubricant inside smooth tubes has been used in automobiles and
residential air-conditioners for almost 60 years. For that reason,
the pressure drop of R12 and R22 inside smooth tubes has been
investigated commonly. Nowadays, new condensers have been de-
signed to work with alternative refrigerants to replace R12 and R22
inside enhanced tubes due to ozone crises and efficiency
requirements.

The pressure drop in smooth tubes during condensation of
refrigerants has been studied by a large number of researchers as
a comparative value with enhanced ones mentioned several times
in the paper.
6.2. Enhanced tubes

The usage of helical horizontal micro-fin tubes is the most com-
mon passive enhancement device for condensers in use nowadays
due to their high heat transfer performance and moderate increase
in pressure drop. Determinations of the heat transfer and pressure
drop have major significance in design practice. Inaccurate calcula-
tion of condenser pressure drop can affect not only pumping power
consumption, but also importantly the heat transfer performance,
due to the relationship with the local condensing temperature
and pressure of refrigerant.

Numerous researches have been conducted on condensation in
micro-fin tubes, as comprehensively reviewed by Newell and Shah
[195], Cavallini et al. [148], Liebenberg et al. [75], Haraguchi et al.
[196], Kedzierski and Goncalves [197], Nozu et al. [198], Goto
et al. [52], and Choi et al. [199]. They proposed correlations on
the basis of different experimental conditions for prediction of
pressure drop. Liebenberg and Meyer [76] presented an increase
of about 200% on heat transfer coefficient in an 8.9 mm i.d. helical
micro-fin tube, compared to that of a smooth tube. However, a
large increase in pressure drop of about 100% compared to a
smooth tube was observed due to increased vapour velocities;
in other words, increased turbulence inside the tube compared
to a smooth tube. Haraguchi et al. [196] investigated pressure
drop of R123, R134a and R22 in a micro-fin tube, and proposed
a correlation based on their experimental data. Kedzierski and
Goncalves [197] condensed R32, R125, R134a and R410A in a mi-
cro-fin tube and modified Pierre’s [200] correlation to develop
friction factor to take account of the fin effect on the flow. Caval-
lini et al. [148] modified Friedel’s [177] correlation using an
equivalent roughness to take account of the effect of micro-fins.
Nozu et al. [169] proposed an annular flow model based on three
micro-fin tubes and four refrigerants, R11, R123, R22 and R134a,
to take account for the shear stress at the condensate surface
and geometrical parameters. Newell and Shah [195] modified
Souza and Pimenta’s [201] correlation to develop a method for
pressure drop using the pressure drop penalty factor. Goto et al.
[52] condensed and evaporated refrigerants R22 and R410A in a
helical micro-fin tube and a herringbone micro-fin tube and pro-
posed two correlations. Choi et al. [199] modified Pierre’s [200]
correlation to determine pressure drop for condensation of R32,
R125, R134a and R410A and for evaporation of R32, R125,
R134a, R410A, R22, R407C, and R32/R134a in a micro-fin tube.
They proposed a correlation that is applicable to evaporation
and condensation in smooth and micro-fin tubes for lubricant-free
refrigerants and refrigerant/lubricant mixtures.
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Recently, Laohalertdecha et al. [202,204,205], Nualboonrueng
and Wongwises [203] investigated the heat transfer enhancement
using EHD technique and pressure drop in smooth and micro-fin
tubes shown in Fig. 9. Their results show that the maximum heat
transfer enhancement and pressure drop are about 1.15% and
50%, respectively.

7. Conclusions

This review has considered heat transfer and pressure drop
investigations during in-tube condensation. Almost all possible re-
search subjects have been summarised on the case in the literature,
such as condensation heat transfer and pressure drop studies
according to the tube orientation (horizontal, vertical, inclined
tubes) and tube geometry (smooth and enhanced tubes), flow pat-
tern studies of condensation, void fraction studies, and refrigerants
with the effect of oil.

In-tube condensation of refrigerants is a crucial event in many
applications, such as condensers used in air conditioning, refriger-
ation, and heat pumps. Struggles with depletion of the strato-
spheric ozone layer and global warming caused by chemical
compounds commenced relatively recently. To this end, condenser
producers have been trying to change working fluids and to use en-
hanced geometries in the process of considering energy efficiency.
These kinds of improvements will continue to take attention and
will have an important impact on the HVAC industry in the future.

The review indicates that numerous works have reported the
heat transfer characteristics for both vertical, inclined and horizon-
tal surfaces. Authors strongly believe that the study of condensa-
tion heat transfer mechanism is still unlimited. Researchers who
are willing to commence the study of condensation in refrigeration
and heat transfer systems will benefit greatly from this paper.
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